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G E O M E T R Y  O F  O P T I M A L  S H O C K - W A V E  S Y S T E M S  

A. V. Omel 'chenko and V. N. Uskov UDC 533.6.011.72 

The notion of optimal shock-wave systems consisting of several plane oblique shocks and a closing 
normal shock was introduced at the end of the 1940s by Petrov and Uskov [1] and also by Osvatich (see 
the bibliography in [2]). The oblique-shock intensities at which maximum recovery factors of static and total 
pressures are reached in the system have been determined numerically [1] and analytically [2]. 

A detailed analysis of optimal systems has been performed previously [3]. In the present paper, as an 
extension of [3], we study the geometry of bodies such that the flow past them leads to the formation of 
optimal shock-wave systems. We give rigorous analytic solutions that determine the flow deflection angle in 
optimal systems in which there are extrema not only of the pressure recovery factors but also of the values of 
velocity head and density. Emphasis is on the analysis of optimal multishock systems at large Mach numbers. 

The resulting solutions are of both theoretical and applied significance and can be used in the gas- 
dynamic design of supersonic air intake, jet devices, and other technical objects. 

1. We consider a plane supersonic flow of a perfect inviscid gas which passes through a system Sn of 
n waves (shock or isentropic). In the system F = {p, p, T,  pv2,po, po, To}, the set of gas-dynamic variables Sn 
that characterizes the undisturbed flow is transformed to the corresponding set Fn of gas-dynamic variables 
past Sn. 

Often, the state of the flow past the system is [1-5] characterized by the recovery factors K (f) of gas- 
dynamic variables, which are the ratio of the elements of the set to the corresponding deceleration parameters 
of the undisturbed flow. 

It has been shown [3] that,  for a given adiabatic exponent Fn and a given Mach number V of the 
undisturbed flow, any of the recovery factors can be expressed in terms of the ratio of the static pressures 
Js =- Pn/p ahead of and behind the system, which is frequently called the intensity of the system. 

It is easy to see that the quantity Js is equal to the product of the intensities Jk = Pk/Pk-I  of all the 

waves that enter the system. Hence, for any f E F,  the quantity K (D is a function of n variables - -  the wave 
intensities Jk. 

The analysis performed in [1-3] showed that some of the functions K (I) are nonmonotonic and reach 

extremum at certain values j~l). Shock-wave systems with the intensities J~f) are called optimal systems for 
the variables f .  

The flow properties past an optimal shock-wave system depend greatly on the intensity of the closing 
shock a. Usually, this shock is especially distinguished, and an optimal system with a closing shock is denoted 
by Sn,a. 

In some systems, the type of closing shock can be chosen by analyzing trivial shock-wave systems [3] 
with a single closing shock (n = 0) for extremum. It has been proved [3] that, for f = p or f = p, the closing 
shock is normal (a = m) and has intensity Jm = (1 + e)M 2 - e, where e = (7 - 1)/(7 + 1). The maximum 
value of the velocity head ( f  = pv 2 = d) is attained in a system with a weak (~ = a) closing discontinuity 

= 1) .  
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Fig. 1 

In some ~echnical devices, it is necessary to transform the supersonic flow to a subsonic flow with 
minimal losses of the total pressure, i.e., it is necessary to solve the  problem 

K (p~ ---* max , (1.1) 
n,# Mn,#~<l 

where M,,# is the Mach number  behind the system Sn,#. 
Beginning with [i, 2], systems that  are optimal for f = p0 have been considered with a normal closing 

shock (S(P,~). 
Obviously, the condit ion M~,# ~< I can also ensure an oblique shock with intensity in the range 

[J,(M), Jm(M)], where the quant i ty  J , (M)  corresponds to the shock behind which the gas velocity is equal to 
the sound velocity [4]: 

2----~ + V \ ' - ~  ] + g' /t = 1 + e(M 2 - I). (1.2) 

In the system S,,#, the smaller the intensity of the closing shock, the smaller the losses of the total 
pressure. Therefore, to satisfy (1.1), it is reasonable to use a system Sn,, in which the closing shock has 
intensity J# = J ,  (1.2). 

The intensities of opt imal  waves chosen by analysis of the ext rema of the variables f determine the 
flow deflection angles in the system/3,  and, hence, the optimal  (for f )  body geometry. 

In this paper, we analyze the flow deflection angles in shock-wave systems tha t  are opt imal  for the 
variables f for various types of closing shock. Emphasis is on flows with large Mach numbers.  

2. The  analysis in [3] of opt imal  shock-wave systems shows that  max imum values of the functions 
studied are reached in systems tha t  consist of a simple isentropic wave i and a closing shock o. 

The intensities j!l) of opt imal  isentropic waves in a flow with a given M value must  ensure special 
Mach numbers M / a h e a d  of the  closing shock: M1 = MI- 

In the cases f = d and f = p, we have M~t = Mp = x/~, and the closing shock is a weak discontinuity 

(J~ = 1) for f = d and a normal  shock for f = p. For the variable p, we have Mp = ~ (2  - r - r and 
J~ = Jm(Mp), and for P0, we have Mp0 = 1 and J# = 1. 

For an optimal  isentropic wave, the flow deflection angle is determined from the formula 

/3s,# = co(M) - co(Ml), (2.1) 

where co(M) is the Prandt l -Meyer  function. 
Since, for a weak discontinuity and a normal shock, the deflection angles are equal to zero, for systems 

S(d) and r tha t  are opt imal  for the velocity head and density, the  flow deflection angles are equal and are 1,or "- ' l ,m 

calculated from formula (2.1) for My = ~ (curve 1 in Fig. 1; here and below, all calculations are performed 
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for 7 = 1.4). 
In a system that is optimal for static pressure, the total flow deflection angle also coincides with the 

flow deflection angle for an isentropic wave and is determined from (2.1) for M = Mp [the dependences ~/(M) 
that correspond to systems optimal for static pressure differ only slightly from similar functions constructed 
for velocity head and density, and, therefore, they are not given separately]. 

In the case f = p0, the optimal system is a compression wave behind which the flow velocity is equal 
to the sound velocity. Hence, in this system, the intensities of the closing sonic and normal shocks are equal 
to unity. The flow deflection angles in the systems S~, p~ and S (p~ 1,m are also determined from (2.1) provided 
that Mp0 = 1 (curve 1 in Fig. 2a; the fragment shown by the dotted curve in Fig. 2a is scaled up in Fig. 2b). 

As can be seen from Figs. 1 and 2, the deflection angles increase monotonically from zero to the limiting 
(M --, co) value 

~ l - v ~  
~ l i m -  2 V/~ w(MI). (2.2) 

At large Mach numbers of the incoming flow, the flow deflection angles in the compression wave differ 
only slightly from the limiting value (2.2). 

Beginning with a certain Mach number M (f) (see Table 1), the angle ~/s,a exceeds the limiting flow 
deflection angle fit for an oblique shock. The latter is calculated from the relations [4] 

j r _  # - ( 1 + ~  ) ~ / ( # - ( 1  + 6)) 2 # ( I + 2 6 ) - 1  
26 + 26 + ' 6 

[~Jl-1 (l +6)-k(Jl-{-6) (1-6)(Jl-1)] 
~l = arctan ~//T 6 1 -{- 6Jl 2(~t l~e-~ " 

This constrains the use of systems with isentropic waves in real technical objects. In particular, in 
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TABLE 1 

Parameters Mr(n) M (d) M() '~ M(d) IM(P)IM(X)IM(g2) I M (3) ] M (4) 1 8 100 1    1 040 
J~ 6.14 5.31 2.10 7.58 7.65 1.42 4.95 10.36 12.57 

supersonic externM-compression inlet diffusers, this constraint is associated with the presence of a shell [5] 
(Fig. 3). It is generally believed that  the inner wall of the shell should be oriented streamwise behind the 
closing shock a. If it is assumed that  the flow deflection angle in the inlet duct of a plane diffuser (between the 
shell 1 and the central body 2) coincides with the slope of the outer surface of the shell [i.e., if it is assumed 
that the angle/3,o between the inner and outer surfaces of the shell tends to zero (Fig. 3a)], the constraint 

/3s,~ </3t(M) (2.3) 

must be imposed on the total flow deflection angle/3s,a in the system. 
In real diffusers,/3w = 3-5 ~ and, hence, the constraint on the angle/3~,~, is more stringent: 

/3,,a </31(M) -/3w. (2.4) 

If (2.4) is not satisfied, a detached curved shock is formed ahead of the shell (Fig. 3b), and this leads 
to deterioration of the gas-dynamic characteristics of the inlet diffuser. 

The constraints (2.3) and (2.4) are shown in Figs. 1 and 2 (curves 2 and 3, respectively). These curves 
have points of intersection with curve 1 (point r in Fig. 2b). The values of M! f) that  correspond to these 
points are the upper limits of existence of optimal systems with isentropic waves. 

Since the Mach numbers M! f) are relatively small (see Table 1), it is technically difficult to organize 
optimal systems with isentropic waves for supersonic velocities of the undisturbed flow. 

3. In systems S,,a with oblique shocks, maximum values of the variables f are reached if the intensities 
of the first n shocks are equal (J1 = ./2 . . . .  = J ,  --- J)  [2, 3]. The values of j(d) and J(P) that  ensure maximum 

values of the coefficients K(,  d) and K(f  ) are determined from the formula 

J " - l ( 1  + e J )  "+1 
/~ = (3.1) 

(J  + 6)"-1(I  + 6)'  

and the intensities J(P) that lead to a maximum of the function K(, n)  are determined from the formula 

J " - l ( 1  + 6J)  "+1 
# = ( J  + 6)"-1(I + ~) (I - 62) . (3.2) 

In the system S(n,~, the total pressure recovery factor reaches an extremum at intensities J(P0), which 
are found from the equation 

A J n - l ( 1  + 6J )n [ J  2 + 2 B J  + 1 + (J  - 1)~/J 2 + 2 C  J +  1], (3.3) 
. = ( j  + 

where a = e(2 + 6)/4(1 + 6) 2, B = (e 2 + 26 + 2)/6(2 + 6), and C = 6(36 + 4)/(2 + 6) 2. 
In the systems listed above, the intensity Ja of the closing shock (r differs from J(f),  and only in the 

optimal system c(p0) ~,n,. are the intensities of all shocks, including the closing shock, equal and given explicitly 
by the formula 

J l - - - J 2  = �9 = J , + l  a - 1  , / ( c ~ - l ' ~  2 #1/(1+n) (~.4) 
"" --  2----~ + V \  26 / + a ,  a =  . 

Knowing the Mach number of the incoming flow and having determined the wave intensities for the 
system from (3.1)-(3.4), it is not hard to calculate the flow deflection angles in the system optimal for the 
variable f.  
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4. The flow deflection angles in optimal systems consisting of one oblique shock and a closing shock 
are given in Figs. 1 and 2 (curves 4). In contrast to optimal  systems with isentropic waves, the flow deflection 
angles in the systems considered behave nonmonotonically with variation in M and have a maximum for 
M = M (I). If M > M U'), the  angles decrease with increase in M and tend to a constant value as M --* c~. 

Simple analysis shows tha t  in the optimal systems e(d) and S (p) (curve 4 in Fig. 1), the "maximum " l , o t  1,rn 

value of the angle ~(d) =/3(p) is reached for the oblique shock intensity 

j(d) = j(p) = v~+( l  +~) + (I § Vr~)vci-+ ~ 

r the maximum flow deflection angle corresponds to and, for the optimal system ~'l,,n, 

j(p) V~(4 q- ~ - e2) h- ( 1 -1- ~)~/(4 - ~2)(4 - ~) 

= 2 v ~  

The values of M~ d) and M (p) are given in Table 1. 

As M ---* 0% the flow deflection angles in the optimal  systems r c(p) and r tend to zero. This ~ l , a ,  ~ l , r n ,  "~ 1,rn 

makes it possible to satisfy conditions (2.3) and (2.4) for any Mach numbers from the in terwl  [M (/), c~). 

Noteworthy is the difference in behavior between the deflection angles in the systems S (P~ and <,(p0) l ,rn " 1,* ' 
which are optimal for the total pressure. 

As can be seen from Fig. 2 (curve 4), the character of the function/3s,m(M) in the system S (p~ does l ,m  

not differ qualitatively from the behavior of this function in the systems r c(P) and <'(P) In particular, ~ l , a ,  '-' l , rn ,  " 1,rn" 

/3s,m "--' 0 as M --, cx~, and this makes it possible to satisfy conditions (2.3) and (2.4) for any Mach numbers. 

In the system S (p~ the character of the function/3s,.(M) is different. It can be seen from Fig. 2a and b 1,* 
(curve 7) that  condition (2.3) for the function/3s,.(M) is satisfied only for small Mach numbers,  and condition 

S (v~ only the  deflection angle/31 at the (2.4) is not satisfied at all. This is due to the fact that  in the system 1,, , 
first shock behaves nonmonotonically;  it reaches a max imum at a certain M and tends to zero as M --* oo. In 
contrast to/31, the flow deflection angle at the closing shock increases monotonically with increase in M and 
tends to the limiting value [2] 

1 - e  
~h = arctan 2"--~' (4.1) 

where/3 h = 45.58 ~ 
With increase in M, the total angle/31,, increases, reaches a maximum [(/3max > /3h (4.1)], and then 

approaches the angle ~h from above (curve 7 in Fig. 2a). 
Note that  in the region bounded by inequality (2.3), the flow deflection angle in an optimal system 

with an isentropic wave is smaller than the flow deflection angle in an optimal shock-wave system. Hence, the 

shock-wave .~ystem S (p~ is ineffective for both large values of M [compared with the system S (p~ from the 

S (p~ for an isentropic viewpoint of conditions (2.3) and (2.4)] and small values (compared with the system 1,. 
wave from the viewpoint of the total pressure recovery factor). 

However, in technical devices for which inequalities (2.3) and (2.4) are not essential, with large Mach 

S (p~ instead of the system S (p~ numbers, it is reasonable to use the system 1,. i,m" 

5. An increase in the number  of shocks (n > 1) in the optimal systems .~n,~r does not change qualitatively 
the dependence of M on the total flow deflection angles (see curves 5 and 6 in Figs. 1 and 2, which correspond to 

r c(P) and r and also curves 8 and 9, which correspond to the system r constructed the systems ,- ,n,a, , - ,n,m, ~ n , m  , t-Yrt~ # , 

for n = 2 and 3, respectively). As n increases, so does/3max, and the maximum is shifted toward larger Mach 

numbers. As with n 1, the angle/3~,a -+ 0 as M --* ~ in all systems with n > 1, with the exception of r 
for which it tends to the limiting deflection angle (4.1). 
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There is, however, a fundamental difference in the behavior of curves for n = 1 and n > I. This 
difference is that, for systems with n > 1, curves 5 and 6 can intersect with curves 2 and 3, which correspond 
to conditions (2.3) and (2.4). 

Thus, for example, in Fig. 2a and b, curve 6, which corresponds to the flow deflection angle in a system 
that is optimal for p0 and consists of three oblique shocks and a closing normal shock, lies below curve 2 in 
the range M E [I, MO)]. At the point with M = M~ I) (see Table I), these curves intersect, and, for M > M ('), 

S (p~ turns out to be larger than/~t(M) (Fig. 2b). As a result, for the total flow deflection angle in the system 3,rn 

M > M(g '), conditions (2.3) and (2.4) are not satisfied. 

For M = M~ 2), the total deflection angle reaches a maximum, then decreases, and tends .to zero as 

M --+ oo. For M = M~ 3), curve 6 intersects curve 2 again, and, at the point M = M~ 4), it intersects curve 3 

(Fig. 2a). Hence, as with small M, for any values of M from the range [M(g 4}, co), an optimal multishock system 
can be realized which is used for the recovery of the total pressure in supersonic inlet diffusers. 

This is also true for other values of n. 
This work was supported by the Foundation for Fundamental Research in Natural Sciences (Grant 

No. 95-0-4.2-171). 
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